3.258 \(\int \frac{(B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^3(c+d x)}{a+a \cos (c+d x)} \, dx\)

Optimal. Leaf size=69 \[ \frac{(2 B-C) \tan (c+d x)}{a d}-\frac{(B-C) \tanh ^{-1}(\sin (c+d x))}{a d}-\frac{(B-C) \tan (c+d x)}{d (a \cos (c+d x)+a)} \]

[Out]

-(((B - C)*ArcTanh[Sin[c + d*x]])/(a*d)) + ((2*B - C)*Tan[c + d*x])/(a*d) - ((B - C)*Tan[c + d*x])/(d*(a + a*C
os[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.239387, antiderivative size = 69, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 40, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.15, Rules used = {3029, 2978, 2748, 3767, 8, 3770} \[ \frac{(2 B-C) \tan (c+d x)}{a d}-\frac{(B-C) \tanh ^{-1}(\sin (c+d x))}{a d}-\frac{(B-C) \tan (c+d x)}{d (a \cos (c+d x)+a)} \]

Antiderivative was successfully verified.

[In]

Int[((B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^3)/(a + a*Cos[c + d*x]),x]

[Out]

-(((B - C)*ArcTanh[Sin[c + d*x]])/(a*d)) + ((2*B - C)*Tan[c + d*x])/(a*d) - ((B - C)*Tan[c + d*x])/(d*(a + a*C
os[c + d*x]))

Rule 3029

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)
*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[1/b^2, Int[(a + b*Sin[e + f*x])
^(m + 1)*(c + d*Sin[e + f*x])^n*(b*B - a*C + b*C*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && NeQ[b*c - a*d, 0] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rule 2978

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*
x])^(n + 1))/(a*f*(2*m + 1)*(b*c - a*d)), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{\left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x)}{a+a \cos (c+d x)} \, dx &=\int \frac{(B+C \cos (c+d x)) \sec ^2(c+d x)}{a+a \cos (c+d x)} \, dx\\ &=-\frac{(B-C) \tan (c+d x)}{d (a+a \cos (c+d x))}+\frac{\int (a (2 B-C)-a (B-C) \cos (c+d x)) \sec ^2(c+d x) \, dx}{a^2}\\ &=-\frac{(B-C) \tan (c+d x)}{d (a+a \cos (c+d x))}-\frac{(B-C) \int \sec (c+d x) \, dx}{a}+\frac{(2 B-C) \int \sec ^2(c+d x) \, dx}{a}\\ &=-\frac{(B-C) \tanh ^{-1}(\sin (c+d x))}{a d}-\frac{(B-C) \tan (c+d x)}{d (a+a \cos (c+d x))}-\frac{(2 B-C) \operatorname{Subst}(\int 1 \, dx,x,-\tan (c+d x))}{a d}\\ &=-\frac{(B-C) \tanh ^{-1}(\sin (c+d x))}{a d}+\frac{(2 B-C) \tan (c+d x)}{a d}-\frac{(B-C) \tan (c+d x)}{d (a+a \cos (c+d x))}\\ \end{align*}

Mathematica [B]  time = 1.07494, size = 201, normalized size = 2.91 \[ \frac{2 \cos \left (\frac{1}{2} (c+d x)\right ) \left ((B-C) \sec \left (\frac{c}{2}\right ) \sin \left (\frac{d x}{2}\right )+\cos \left (\frac{1}{2} (c+d x)\right ) \left ((B-C) \left (\log \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )-\log \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )\right )+\frac{B \sin (d x)}{\left (\cos \left (\frac{c}{2}\right )-\sin \left (\frac{c}{2}\right )\right ) \left (\sin \left (\frac{c}{2}\right )+\cos \left (\frac{c}{2}\right )\right ) \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right ) \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )}\right )\right )}{a d (\cos (c+d x)+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[((B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^3)/(a + a*Cos[c + d*x]),x]

[Out]

(2*Cos[(c + d*x)/2]*((B - C)*Sec[c/2]*Sin[(d*x)/2] + Cos[(c + d*x)/2]*((B - C)*(Log[Cos[(c + d*x)/2] - Sin[(c
+ d*x)/2]] - Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]]) + (B*Sin[d*x])/((Cos[c/2] - Sin[c/2])*(Cos[c/2] + Sin[c
/2])*(Cos[(c + d*x)/2] - Sin[(c + d*x)/2])*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])))))/(a*d*(1 + Cos[c + d*x]))

________________________________________________________________________________________

Maple [B]  time = 0.054, size = 163, normalized size = 2.4 \begin{align*}{\frac{B}{da}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }-{\frac{C}{da}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }-{\frac{B}{da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-1}}+{\frac{B}{da}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) }-{\frac{C}{da}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) }-{\frac{B}{da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-1}}-{\frac{B}{da}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) }+{\frac{C}{da}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3/(a+a*cos(d*x+c)),x)

[Out]

1/a/d*B*tan(1/2*d*x+1/2*c)-1/a/d*C*tan(1/2*d*x+1/2*c)-1/a/d*B/(tan(1/2*d*x+1/2*c)-1)+1/a/d*B*ln(tan(1/2*d*x+1/
2*c)-1)-1/a/d*ln(tan(1/2*d*x+1/2*c)-1)*C-1/a/d*B/(tan(1/2*d*x+1/2*c)+1)-1/a/d*B*ln(tan(1/2*d*x+1/2*c)+1)+1/a/d
*ln(tan(1/2*d*x+1/2*c)+1)*C

________________________________________________________________________________________

Maxima [B]  time = 1.23708, size = 265, normalized size = 3.84 \begin{align*} -\frac{B{\left (\frac{\log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}{a} - \frac{\log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}{a} - \frac{2 \, \sin \left (d x + c\right )}{{\left (a - \frac{a \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}}\right )}{\left (\cos \left (d x + c\right ) + 1\right )}} - \frac{\sin \left (d x + c\right )}{a{\left (\cos \left (d x + c\right ) + 1\right )}}\right )} - C{\left (\frac{\log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}{a} - \frac{\log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}{a} - \frac{\sin \left (d x + c\right )}{a{\left (\cos \left (d x + c\right ) + 1\right )}}\right )}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3/(a+a*cos(d*x+c)),x, algorithm="maxima")

[Out]

-(B*(log(sin(d*x + c)/(cos(d*x + c) + 1) + 1)/a - log(sin(d*x + c)/(cos(d*x + c) + 1) - 1)/a - 2*sin(d*x + c)/
((a - a*sin(d*x + c)^2/(cos(d*x + c) + 1)^2)*(cos(d*x + c) + 1)) - sin(d*x + c)/(a*(cos(d*x + c) + 1))) - C*(l
og(sin(d*x + c)/(cos(d*x + c) + 1) + 1)/a - log(sin(d*x + c)/(cos(d*x + c) + 1) - 1)/a - sin(d*x + c)/(a*(cos(
d*x + c) + 1))))/d

________________________________________________________________________________________

Fricas [A]  time = 1.68108, size = 320, normalized size = 4.64 \begin{align*} -\frac{{\left ({\left (B - C\right )} \cos \left (d x + c\right )^{2} +{\left (B - C\right )} \cos \left (d x + c\right )\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) -{\left ({\left (B - C\right )} \cos \left (d x + c\right )^{2} +{\left (B - C\right )} \cos \left (d x + c\right )\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \,{\left ({\left (2 \, B - C\right )} \cos \left (d x + c\right ) + B\right )} \sin \left (d x + c\right )}{2 \,{\left (a d \cos \left (d x + c\right )^{2} + a d \cos \left (d x + c\right )\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3/(a+a*cos(d*x+c)),x, algorithm="fricas")

[Out]

-1/2*(((B - C)*cos(d*x + c)^2 + (B - C)*cos(d*x + c))*log(sin(d*x + c) + 1) - ((B - C)*cos(d*x + c)^2 + (B - C
)*cos(d*x + c))*log(-sin(d*x + c) + 1) - 2*((2*B - C)*cos(d*x + c) + B)*sin(d*x + c))/(a*d*cos(d*x + c)^2 + a*
d*cos(d*x + c))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)**3/(a+a*cos(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.42072, size = 149, normalized size = 2.16 \begin{align*} -\frac{\frac{{\left (B - C\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right )}{a} - \frac{{\left (B - C\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right )}{a} - \frac{B \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - C \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{a} + \frac{2 \, B \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )} a}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3/(a+a*cos(d*x+c)),x, algorithm="giac")

[Out]

-((B - C)*log(abs(tan(1/2*d*x + 1/2*c) + 1))/a - (B - C)*log(abs(tan(1/2*d*x + 1/2*c) - 1))/a - (B*tan(1/2*d*x
 + 1/2*c) - C*tan(1/2*d*x + 1/2*c))/a + 2*B*tan(1/2*d*x + 1/2*c)/((tan(1/2*d*x + 1/2*c)^2 - 1)*a))/d